31 Mar 2011

Transfomator

Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya (mentransformasikan tegangan). Dalam operasi umumnya, trafo-trafo tenaga ditanahkan pada titik netralnya sesuai dengan kebutuhan untuk sistem pengamanan/proteksi, sebagai contoh transformator 150/70 kV ditanahkan secara langsung di sisi netral 150 kV, dan transformator 70/20 kV ditanahkan dengan tahanan di sisi netral 20 kV nya. Transformator yang telah diproduksi terlebih dahulu melalui pengujian sesuai standar yang telah ditetapkan.
Kerugian dalam transformator

Perhitungan diatas hanya berlaku apabila kopling primer-sekunder sempurna dan tidak ada kerugian, tetapi dalam praktek terjadi beberapa kerugian yaitu:

   1. kerugian tembaga. Kerugian I^2\,R dalam lilitan tembaga yang disebabkan oleh resistansi tembaga dan arus listrik yang mengalirinya.
   2. Kerugian kopling. Kerugian yang terjadi karena kopling primer-sekunder tidak sempurna, sehingga tidak semua fluks magnet yang diinduksikan primer memotong lilitan sekunder. Kerugian ini dapat dikurangi dengan menggulung lilitan secara berlapis-lapis antara primer dan sekunder.
   3. Kerugian kapasitas liar. Kerugian yang disebabkan oleh kapasitas liar yang terdapat pada lilitan-lilitan transformator. Kerugian ini sangat memengaruhi efisiensi transformator untuk frekuensi tinggi. Kerugian ini dapat dikurangi dengan menggulung lilitan primer dan sekunder secara semi-acak (bank winding)
   4. Kerugian histeresis. Kerugian yang terjadi ketika arus primer AC berbalik arah. Disebabkan karena inti transformator tidak dapat mengubah arah fluks magnetnya dengan seketika. Kerugian ini dapat dikurangi dengan menggunakan material inti reluktansi rendah.
   5. Kerugian efek kulit. Sebagaimana konduktor lain yang dialiri arus bolak-balik, arus cenderung untuk mengalir pada permukaan konduktor. Hal ini memperbesar kerugian kapasitas dan juga menambah resistansi relatif lilitan. Kerugian ini dapat dikurang dengan menggunakan kawat Litz, yaitu kawat yang terdiri dari beberapa kawat kecil yang saling terisolasi. Untuk frekuensi radio digunakan kawat geronggong atau lembaran tipis tembaga sebagai ganti kawat biasa.
   6. Kerugian arus eddy (arus olak). Kerugian yang disebabkan oleh GGL masukan yang menimbulkan arus dalam inti magnet yang melawan perubahan fluks magnet yang membangkitkan GGL. Karena adanya fluks magnet yang berubah-ubah, terjadi olakan fluks magnet pada material inti. Kerugian ini berkurang kalau digunakan inti berlapis-lapisan.

Klasifikasi 

Transformator tenaga dapat di klasifikasikan menurut: • Pasangan: 
  • Pasangan dalam 
  • Pasanga luar
• Pendinginan Menurut cara pendinginannya dapat dibedakan sebagai berikut: (lihat Tabel 1) 
• Fungsi/Pemakaian
  • Transformator mesin 
  • Transformator Gardu Induk 
  • Transformato 
r Distribusi • Kapasitas dan Tegangan Untuk mempermudah pengawasan dalam operasi trafo dapat dibagi menjadi: Trafo besar, Trafo sedang, Trafo kecil. 

Cara Kerja dan Fungsi Tiap-tiap Bagian

Suatu transformator terdiri atas beberapa bagian yang mempunyai fungsi masing-masing: • Bagian utama
 - Inti besi
 Inti besi berfungsi untuk mempermudah jalan fluksi, yang ditimbulkan oleh arus listrik yang melalui kumparan. Dibuat dari lempengan-lempengan besi tipis yang berisolasi, untuk mengurangi panas (sebagai rugi-rugi besi) yang ditimbulkan oleh “Eddy Current”.
 - Kumparan trafo
 Beberapa lilitan kawat berisolasi membentuk suatu kumparan. Kumparan tersebut diisolasi baik terhadap inti besi maupun terhadap kumparan lain dengan isolasi padat seperti karton, pertinax dan lain-lain.
 Umumnya pada trafo terdapat kumparan primer dan sekunder. Bila kumparan primer dihubungkan dengan tegangan/arus bolak-balik maka pada kumparan tersebut timbul fluksi yang menginduksikan tegangan, bila pada rangkaian sekunder ditutup (rangkaian beban) maka akan mengalir arus pada kumparan ini. Jadi kumparan sebagai alat transformasi tegangan dan arus.
- Kumparan tertier
 Kumparan tertier diperlukan untuk memperoleh tegangan tertier atau untuk kebutuhan lain. Untuk kedua keperluan tersebut, kumparan tertier selalu dihubungkan delta. Kumparan tertier sering dipergunakan juga untuk penyambungan peralatan bantu seperti kondensator synchrone, kapasitor shunt dan reactor shunt, namun demikian tidak semua trafo daya mempunyai kumparan tertier.
- Minyak trafo
 Sebagian besar trafo tenaga kumparan-kumparan dan intinya direndam dalam minyak-trafo, terutama trafo-trafo tenaga yang berkapasitas besar, karena minyak trafo mempunyai sifat sebagai media pemindah panas (disirkulasi) dan bersifat pula sebagai isolasi (daya tegangan tembus tinggi) sehingga berfungsi sebagai media pendingin dan isolasi. Untuk itu minyak trafo harus memenuhi persyaratan sebagai berikut:
 
 
  • kekuatan isolasi tinggi 
  • penyalur panas yang baikberat jenis yang kecil, sehingga partikel-partikel dalam minyak dapat mengendap dengan cepat 
  • viskositas yang rendah agar lebih mudah bersirkulasi dan kemampuan pendinginan menjadi lebih baik 
  • titik nyala yang tinggi, tidak mudah menguap yang dapat membahayakan 
  • tidak merusak bahan isolasi padat 
  • sifat kimia y
ang stabil. - Bushing
 Hubungan antara kumparan trafo ke jaringan luar melalui sebuah busing yaitu sebuah konduktor yang diselubungi oleh isolator, yang sekaligus berfungsi sebagai penyekat antara konduktor tersebut denga tangki trafo.
- Tangki dan Konservator
 Pada umumnya bagian-bagian dari trafo yang terendam minyak trafo berada (ditempatkan) dalam tangki. Untuk menampung pemuaian minyak trafo, tangki dilengkapi dengan konservator.
• Peralatan Bantu
 - Pendingin
 Pada inti besi dan kumparan-kumparan akan timbul panas akibat rugi-rugi besi dan rugi-rugi tembaga. Bila panas tersebut mengakibatkan kenaikan suhu yang berlebihan, akan merusak isolasi di dalam trafo, maka untuk mengurangi kenaikan suhu yang berlebihan tersebut trafo perlu dilengkapi dengan sistem pendingin untuk menyalurkan panas keluar trafo.
 Media yang digunakan pada sistem pendingin dapat berupa: Udara/gas, minyak dan air. Pengalirannya (sirkulasi) dapat dengan cara : 
  • Alamiah (natural) 
  • Tekanan/paksaan (forced). 
Macam-macam dan sistem pendingin trafo berdasarkan media dan cara pengalirannya dapat diklasifikasikan seperti pada Tabel 1. - Tap Changer (perubah tap)
 Tap Changer adalah perubah perbandingan transformator untuk mendapatkan tegangan operasi sekunder sesuai yang diinginkan dari tegangan jaringan/primer yang berubah-ubah. Tap changer dapat dilakukan baik dalam keadaan berbeban (on-load) atau dalam keadaan tak berbeban (off load), tergantung jenisnya.
- Alat pernapasan
 Karena pengaruh naik turunnya beban trafo maupun suhu udara luar, maka suhu minyakpun akan berubah-ubah mengikuti keadaan tersebut. Bila suhu minyak tinggi, minyak akan memuai dan mendesak udara di atas permukaan minyak keluar dari dalam tangki, sebaliknya bila suhu minyak turun, minyak menyusut maka udara luar akan masuk ke dalam tangki.
 Kedua proses di atas disebut pernapasan trafo. Permukaan minyak trafo akan selalu bersinggungan dengan udara luar yang menurunkan nilai tegangan tembus minyak trafo, maka untuk mencegah hal tersebut, pada ujung pipa penghubung udara luar dilengkapi tabung berisi kristal zat hygroskopis.
- Indikator
 Untuk mengawasi selama trafo beroperasi, maka perlu adanya indicator pada trafo sebagai berikut:
  • indikator suhu minyak 
  • indikator permukaan minyak 
  • indikator sistem pendingin 
  • indikator kedudukan tap 
  • dan sebagainya.
• Peralatan Proteksi  - Rele Bucholz
 Rele Bucholz adalah rele alat/rele untuk mendeteksi dan mengamankan terhadap gangguan di dalam trafo yang menimbulkan gas. 
Gas yang timbul diakibatkan oleh:
a. Hubung singkat antar lilitan pada/dalam phasa 
b. Hubung singkat antar phasa 
c. Hubung singkat antar phasa ke tanah 
d. Busur api listrik antar laminasi 
e. Busur api listrik karena kontak yang kurang baik. 
- Pengaman tekanan lebih 
Alat ini berupa membran yang dibuat dari kaca, plastik, tembaga atau katup berpegas, berfungsi sebagai pengaman tangki trafo terhadap kenaikan tekan gas yang timbul di dalam tangki yang akan pecah pada tekanan tertentu dan kekuatannya lebih rendah dari kakuatan tangi trafo.
- Rele tekanan lebih
 Rele ini berfungsi hampir sama seperti rele Bucholz, yakni mengamankan terhadap gangguan di dalam trafo. Bedanya rele ini hanya bekerja oleh kenaikan tekanan gas yang tiba-tiba dan langsung mentripkan P.M.T.
- Rele Diferensial
 Berfungsi mengamankan trafo dari gangguan di dalam trafo antara lain flash over antara kumparan dengan kumparan atau kumparan dengan tangki atau belitan dengan belitan di dalam kumparan ataupun beda kumparan.
- Rele Arus lebih
 Befungsi mengamankan trafo arus yang melebihi dari arus yang diperkenankan lewat dari trafo terseut dan arus lebih ini dapat terjadi oleh karena beban lebih atau gangguan hubung singkat.
- Rele Tangki tanah
 Berfungsi untuk mengamankan trafo bila ada hubung singkat antara bagian yang bertegangan dengan bagian yang tidak bertegangan pada trafo.
- Rele Hubung tanah
 Berfungsi untuk mengamankan trafo bila terjadi gangguan hubung singkat satu phasa ke tanah.
- Rele Termis
 Berfungsi untuk mencegah/mengamankan trafo dari kerusakan isolasi kumparan, akibat adanya panas lebih yang ditimbulkan oleh arus lebih. Besaran yang diukur di dalam rele ini adalah kenaikan temperatur.

Pengujian Transformator

Pengujian transformator dilaksanakan menurut SPLN’50-1982 dengan melalui tiga macam pengujian, sebagaimana diuraikan juga dalam IEC 76 (1976), yaitu : - Pengujian Rutin
 Pengujian rutin adalah pengujian yang dilakukan terhadap setiap transformator, meliputi:
  • pengujian tahanan isolasi 
  • pengujian tahanan kumparan 
  • pengujian perbandingan belitan Pengujian vector group 
  • pengujian rugi besi dan arus beban kosong 
  • pengujian rugi tembaga dan impedansi 
  • pengujian tegangan terapan (Withstand Test) 
  • pengujian tegangan induksi (Induce Test).
- Pengujian jenis  Pengujian jenis adalah pengujian yang dilaksanakan terhadap sebuah trafo yang mewakili trafo lainnya yang sejenis, guna menunjukkan bahwa semua trafo jenis ini memenuhi persyaratan yang belum diliput oleh pengujian rutin. Pengujian jenis meliputi:
 
 
  • pengujian kenaikan suhu
  • pengujian impedansi
- Pengujian khusus  Pengujian khusus adalah pengujian yang lain dari uji rutin dan jenis, dilaksanakan atas persetujuan pabrik denga pmbeli dan hanya dilaksanakan terhadap satu atau lebih trafo dari sejumlah trafo yang dipesan dalam suatu kontrak. Pengujian khusus meliputi :
 
 
  • pengujian dielektrik
  • pengujian impedansi urutan nol pada trafo tiga phasa
  • pengujian hubung singkat
  • pengujian harmonik pada arus beban kosong
  • pengujian tingkat bunyi akuistik
  • pengukuran daya yang diambil oleh motor-motor kipas dan pompa minyak.
• Pengujian Rutin  - Pengukuran tahanan isolasi
 Pengukuran tahanan isolasi dilakukan pada awal pengujian dimaksudkan untuk mengetahui secara dini kondisi isolasi trafo, untuk menghindari kegagalan yang fatal dan pengujian selanjutnya, pengukuran dilakukan antara:
  • sisi HV - LV
  • sisi HV - Ground
  • sisi LV- Groud
  • X1/X2-X3/X4 (trafo 1 fasa)
  • X1-X2 dan X3-X4 )trafo 1 fasa yang dilengkapi dengan circuit breaker.
Pengukuran dilakukan dengan menggunakan megger, lebih baik yang menggunakan baterai karena dapat membangkitkan tegangan tinggi yang lebih stabil. Harga tahanan isolasi ini digunakan untuk kriteria kering tidaknya trafo, juga untuk mengetahui apakah ada bagian-bagian yang terhubung singkat. - Pengukuran tahanan kumparan
 Pengukuran tahanan kumparan adalah untuk mengetahui berapa nilai tahanan listrik pada kumparan yang akan menimbulkan panas bila kumparan tersebut dialiri arus.
 Nilai tahanan belitan dipakai untuk perhitungan rugi-rugi tembaga trafo.
 Pada saat melakukan pengukuran yang perlu diperhatikan adalah suhu belitan pada saat pengukuran yang diusahakan sama dengan suhu udara sekitar, oleh karenanya diusahakan arus pengukuran kecil.
 Peralatan yang digunakan untuk pengukuran tahanan di atas 1 ohm adalah Wheatstone Bridge, sedangkan untuk tahanan yang lebih kecil dari 1 ohm digunakan Precition Double Bridge.
 Pengukuran dilakukan pada setiap fasa trafo, yaitu antara terminal:
 Untuk terminal tegangan tinggi:
 a. Trafo 3 fasa
     - fasa A - fasa B  - fasa B - fasa C  - fasa C - fasa A 
b. Trafi 1 fasa
    - terminal H1-H2 untuk trafo double bushing  - terminal H1-Ground untuk trafo single bushing
Untuk sisi tegangan rendah  a. Trafo 3 fasa
 
 
    - fasa a - fasa b  - fasa b - fasa c  - fasa c - fasa a
b. Trafo 1 fasa  - terminal X1-X4 dengan X2-X3 dihubung singkat.
Pengukuran dengan Wheatstone bridge digunakan untuk tahanan di atas 1 ohm. Rangkaian pengukuran dapat dilihat pada Gambar 1. Pada keadaan seimbang berlaku rumus:
Rx adalah hagra tahanan belitan yang diukur = factor pengali. Pengukuran dengan Precition double bridge digunakan untuk tahanan yang lebih kecil dar 1 ohm. Rangkaian pengukuran seperti Gambar 2. Tahanan yang diukur Rx dapat dihitung dengan menggunakan rumus: 
- Pengukuran perbandingan belitan
 Pengukuran perbandingan belitan adalah untuk mengetahui perbandingan jumlah kumparan sisi tegangan tinggi dan sisi tegangan rendah pada setiap tapping, sehingga tegangan output yang dihasilkan oleh trafo sesuai dengan yang dikehendaki. toleransi yang diijinkan adalah:
 a. 0,5 % dari rasio tegangan atau b. 1/10 dari persentase impedansi pada tapping nominal.
 Pengukuran perbandingan belitan dilakukan pada saat semi assembling yaitu setelah coil trafo di assembling dengan inti besi dan setelah tap changer terpasang, pengujian kedua ini bertujuan untuk mengetahui apakah posisi tap trafo telah terpasang secara benar dan juga untuk pemeriksaan vector group trafo.
 Pengukuran dapat dilakukan dengan menggunakan Transformer Turn Ratio Test (TTR), misalnya merk Jemes G. Biddle Co Cat. No.55005 atau Cat. No. 550100-47.
- Pemeriksaan Vector Group
 Pemeriksaan vector group bertujuan untuk mengetahui apakah polaritas terminal-terminal trafo positif atau negatif. Standar dari notasi yang dipakai adalah ADDITIVE dan SUBTRACTIVE.
- Pengukuran rugi dan arus beban kosong
 Pengukuran ini untuk mengetahui berapa daya yang hilang yang disebabkan oleh rugi histerisis dan eddy current dari inti besi (core) dan besarnya arus yang ditimbulkan oleh kerugian tersebut. Pengukuran dilakukan dengan memberikan tegangan nominal pada salah satu sisi dan sisi lainnya dibiarkan terbuka.
- Pengukuran rugi tembaga dan impedansi
 Pengukuran ini bertujuan untum mengetahui besarnya daya yang hilang pada saat trafo beroperasi akibat dari tembaga (Wcu) dan strey loss (Ws) trafo yang digunakan.
 Pengukuran dilakukan dengan memberi arus nominal pada salah satu sisi dan pada sisi yang lain dihubung-singkat, dengan demikian akan terbangkit juga arus nominal pada sisi tersebut, sehingga trafo seolah-olah dibebani penuh.
 Perhitungan rugi beban penuh (Wcu) dan impedansi (Iz), dimana pada waktu pengukuran tahanan belitan (R), Wcu dan Iz dilakukan pada saat suhu rendah (udara sekitar (t)), maka Wcu dan Iz perlu dikoreksi terhadap suhu acuan 75ÂșC, dimana factor koreksi (a) adalah :
 - Pengujian tegangan terapan (Withstand Test)
 Pengujian ini dimaksudkan untuk menguji kekuatan isolasi antara kumparan dan body tangki.
 Pengujian dilakukan dengan memberi tegangan uji sesuai denga standar uji dan dilakukan pada:
    - sisi tegangan tinggi terhadap sisi tegangan rendah dan body yang di ke tanahkan  - sisi tegangan rendah terhadap sisi tegangan tinggi dan body yang di ke tanahkan.  - waktu pengujian 60 detik.
- Pengujian tegangan induksi  Pengujian tegangan induksi bertujuan untuk mengetahui kekuatan isolasi antara layer dari tiap-tiap belitan dan kekuatan isolasi antara belitan trafo. Pengujian dilakukan dengan memberi tegangan supply dua kali tegangan nominal pada salah satu sisi dan sisi lainnya dibiarkan terbuka. Untuk mengatasi kejenuhan pada inti besi (core) maka frekwensi yang digunakan harus dinaikkan sesuai denga kebutuhan. Lama pengujian tergantung pada besarnya frekwensi pengujian berdasarkan rumus:
waktu pengujian maksimum adalah 60 detik.
 - Pengujian kebocoran tangki
 Pengujian kebocoran tangki dilakukan setelah semua komponen trafo terpasang. Pengujian dilakukan untuk mengetahui kekuatan dan kondisi paking dan las trafo. Pengujian dilakukan dengan memberikan tekanan nitrogen (N2) sebesar kurang lebih 5 psi dan dilakukan pengamatan pada bagian-bagian las dan paking dengan memberikan cairan sabun pada bagian tersebut. Pengujian dilakukan sekitar 3 jam apakah terjadi penurunan tekanan.
• Pengujian Jenis (Type Test)
 - Pengujian kenaikan suhu
 Pengujian kenaikan suhu dimaksudkan untuk mengetahui berapa kenaikan suhu oli dan kumparan trafo yang disebabkan oleh rugi-rugi trafo apabila trafo dibebani. Pengujian ini juga bertujuan untuk melihat apakah penyebab panas trafo sudah cukup effisien atau belum.
 Pada trafo dengan tapping tegangan di atas 5% pengujian kenaikan suhu dilakukan pada tappng tegangan terendah (arus tertinggi), pada trafo dengan tapping maksimum 5% pengujian dilakukan pada tapping nominal.
 Pengujian kenaikan suhu sama dengan pengujian beban penuh, pengujian dilakukan dengan memberikan arus trafo sedemikian hingga membangkitkan rugi-rugi trafo, yaitu rugi beban penuh dan rugi beban kosong.
 Suhu kumparan dihitung berdasarkan rumus sebagai berikut:
 t adalah suhu sekitar pada saat akhir pengujian.
- Pengujian tegangan impulse
 Pengujian impulse ini dimaksudkan untuk mengetahui kemampuan dielektrik dari sistem isolasi trafo terhadap tegangan surja petir.
 Pengujian impuls adalah pengujian dengan memberi tegangan lebih sesaat dengan bentuk gelombang tertentu. Bila trafo mengalami tegangan lebih, maka tegangan tersebut hampir didistribusikan melalui effek kapasitansi yang terdapat pada :
    - antar lilitan trafo - antar layer trafo - antara coil denga ground.
- Pengujian tegangan tembus oli  Pengujian tegangan tembus oli dimaksudkan untuk mengetahui kemampuan dielektrik oli. Hal ini dilakukan karena selain berfungsi sebagai pendingin dari trafo, oli juga berfungsi sebagai isolasi.
 Persyaratan yang ditentukan adalah sesuai denga standart SPLN 49 - 1 : 1982, IEC 158 dan IEC 296 yaitu:
 - > = 30 KV/2,5 mm sebelum purifying
- > = 50 KV/2,5 mm setelah purifying
 Peralatan yang dapat digunakan misalnya merk Hipotronics type EP600CD. Cara pengujian:
 - bersihkan tempat sample oli dari kotoran dengan mencucinya dengan oli sampai bersih.
- ambil contoh/sample oli yang akan diuji, usahakan pada saat pengambilan sample oli tidak tersentuh tangan atau terlalu lama terkena udara luar karena oli ini sanga sensitive.
- tempatkan sample oli padaalat tetes.
- nyalakan power alat tetes.
- tekan tombol start dan counter akan mencatat secara otomatis sejauh mana kemampuan dielektrik oli tersebut. Setelah counter berhenti dan tombol reset menyala, tekan tombol reset untuk mengembalikan ke posisi semula.
- hasil pengujian tegangan tembus diambil rata-ratanya setelah dilakukan 5 (lima) kali dengan selang waktu 2 menit.

Dioda / diode


Dioda termasuk komponen elektronika yang terbuat dari bahan semikonduktor. Beranjak dari penemuan dioda, para ahli menemukan juga komponen turunan lainnya yang unik.
Dioda
Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan arus satu arah saja. Struktur dioda tidak lain adalah sambungan semikonduktor P dan N. Satu sisi adalah semikonduktor dengan tipe P dan satu sisinya yang lain adalah tipe N. Dengan struktur demikian arus hanya akan dapat mengalir dari sisi P menuju sisi N.


Zener
Phenomena tegangan breakdown dioda ini mengilhami pembuatan komponen elektronika lainnya yang dinamakan zener. Sebenarnya tidak ada perbedaan sruktur dasar dari zener, melainkan mirip dengan dioda. Tetapi dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada zener yang memiliki tegangan Vz sebesar 1.5 volt, 3.5 volt dan sebagainya.

Gambar 5 : Simbol Zener
Ini adalah karakteristik zener yang unik. Jika dioda bekerja pada bias maju maka zener biasanya berguna pada bias negatif (reverse bias).
LED
LED adalah singkatan dari Light Emiting Dioda, merupakan komponen yang dapat mengeluarkan emisi cahaya.LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkna emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.
Gambar 6 : Simbol LED
Pada saat ini warna-warna cahaya LED yang banyak ada adalah warna merah, kuning dan hijau.LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi daya-nya. Rumah (chasing) LED dan bentuknya juga bermacam-macam, ada yang persegi empat, bulat dan lonjong.
Aplikasi
Dioda banyak diaplikasikan pada rangkaian penyerah arus (rectifier) power suplai atau konverter AC ke DC. Dipasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdwon-nya. Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdwon-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya.
Gambar 7 : LED array
LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.




Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.

Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.

Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.

Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.

Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).

Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.

Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.

Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.

Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara Kerja Transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.

Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.

FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.
BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).

Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan ÎČ atau hFE. ÎČ biasanya berkisar sekitar 100 untuk transistor-transisor BJT.
FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.

FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

Resistor

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak,  emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator. Bagaimana prinsip konduksi, dijelaskan pada artikel tentang semikonduktor.
Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan di antara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:

Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.

Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.

Komposisi karbon
Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna dari harganya.

Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, bahang dari solder dapat mengakibatkan perubahan resistansi yang tak dapat dikembalikan.

Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.

Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.
Penandaan resistor

Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.

Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.
Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.

Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334"     = 33 × 10.000 ohm = 330 KOhm
"222"     = 22 × 100 ohm = 2,2 KOhm
"473"     = 47 × 1,000 ohm = 47 KOhm
"105"     = 10 × 100,000 ohm = 1 MOhm

Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100"     = 10 × 1 ohm = 10 ohm
"220"     = 22 × 1 ohm = 22 ohm

Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.

Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7"     = 4.7 ohm
"0R22"     = 0.22 ohm
"0R01"     = 0.01 ohm

Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001"     = 100 × 10 ohm = 1 kohm
"4992"     = 499 × 100 ohm = 49,9 kohm
"1000"     = 100 × 1 ohm = 100 ohm

"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm

Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

Pengertian Tata Letak

Pada umumnya bila kita sempat bertanya kepada para pejabat produksi sebuah perusahaan, " Bagaimana cara menususn tata letak demi efektifitas dan efisiensi sistem produksi? Mereka menjawab dalam kisaran sepuluh hal : mengoptimalkan pemanfaatan peralatan, meminimalkan penggunaan tenaga kerja, memperlancar aliran bahan dan produk jadi, menyedikitkan persediaan, mengefisienkan pemakaian ruangan, memberikan kecukupan ruang gerak operasional maupun pemeliharaan, meminimalkan investasi modal, memberikan feksibilitas untuk perubahan, meningkatkan keselamatan kerja, dan menciptakan suasana kerja yang kondusif. Tata letak produksi dikelola dengan tujuan mengembangkan sistem produksi yang efektif dan efisien. Berdasarkan sepuluh kisaran jawaban para pejabat produksi sebuah perusahaan telah dikemukakan. Efektifitas pengaturan tata letak produksi ditentukan oleh faktor material handling, utilisasi ruang, kemudahan pemeliharaan, kelonggaran gerak, orientasi produk, dan perubahan produk atau desain produk. Tata letak produksi dapat diklasifikasikan ke dalam tata letak proses, tata letak produk, tata letak posisi tetap. Setiap jenis tata letak tersebut, dalam keberadaannya mempunyai keuntungan dan kelemahan untuk dipergunakan. Tata letak proses memberikan keuntungan utilisasi mesin, spesialisasi supervisi namun persediaan barang dalam proses tinggi juga kebutuhan material handling yang meningkat. Tata letak proses memberikan keuntungan aliran material handling langsung dan simpel, persediaan barang dalam proses rendah akan tetapi kerusakan mesin niscaya mengehntikan total produksi juga investasi modal yang besar. Sedangkan keuntungan tata letak posisi tetap tersurat dalam kesempatan pengayaan tugas, fleksibel dan kebanggan tenaga kerja karena dapat menyelesaikan seluruh pekerjaan namun dapat terjadi duplikasi mesin dan peralatan, gerakan personil yang tinggi serta tentu memerlukan tenaga kerja high quaity. Tata eltak produksi tidak lain fungsi dan seni.

Denise Richard

carolina ardohain

jessica gomes

jennifer lawrence

jennifer jasmin





jennifer garner




bidvestiser

About

tuker link yuk

link sahabat

Pengikut